The effect of increasing hydrostatic pressure on the microbial degradation, the organic matter composition, and the microbiome of 'marine snow' particles was studied in laboratory incubation experiments. Model aggregates were produced from the diatom Skeletonema marinoi and the natural microbial community of surface seawater collected in the Kattegat. The aggregates were incubated individually in rotating pressure and control tanks to keep them suspended during 20-day incubations in the dark and at 3°C. In the pressure tanks, hydrostatic pressure was increased at increments of 5 MPa per day to finally reach 100 MPa. This pressure scheme simulates the descent of diatom aggregates from the surface ocean down into a 10-km deep hadal trench. In the control tanks, pressure was always left at atmospheric level.The abundance of free-living diatoms, bacteria, and viruses in the water surrounding sinking diatom aggregates was determined by microscopic (diatoms) and flow-cytometric cell counts (bacteria and viruses) in samples retrieved every 4 days throughout the 20-day incubation experiment.