Replication Data for: Predicting measurement error variance in social surveys

DOI

Social science commonly studies relationships among variables by employing survey questions. Answers to these questions will contain some degree of measurement error, distorting the relationships of interest. Such distortions can be removed by standard statistical methods, when these are provided knowledge of a question’s measurement error variance. However, acquiring this information routinely necessitates additional experimentation, which is infeasible in practice. We use three decades’ worth of survey experiments combined with machine learning methods to show that survey measurement error variance can be predicted from the way a question was asked. By predicting experimentally obtained estimates of survey measurement error variance from question characteristics, we enable researchers to obtain estimates of the extent of measurement error in a survey question without requiring additional data collection. Our results suggest only some commonly accepted best practices in survey design have a noticeable impact on study quality, and that predicting measurement error variance is a useful approach to removing this impact in future social surveys.

This repository accompanies the full paper, and allows users to reproduce all results.

The repository is provided by the authors under the CC-BY 4.0 license: https://creativecommons.org/licenses/by/4.0/legalcode

Identifier
DOI https://doi.org/10.34894/U9L9NV
Metadata Access https://dataverse.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34894/U9L9NV
Provenance
Creator Oberski, Daniel ORCID logo; DeCastellarnau, Anna
Publisher DataverseNL
Contributor Oberski, Daniel
Publication Year 2017
Rights This repository is licences under CC-BY 4.0. Please see https://creativecommons.org/licenses/by/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Contact Oberski, Daniel (Utrecht University)
Representation
Resource Type Dataset
Format application/gzip
Size 27635922
Version 1.0
Discipline Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Life Sciences; Social Sciences; Social and Behavioural Sciences; Soil Sciences