New information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition. Nodule abundance (percent of sea floor covered) varies greatly, according to photographs from eight stations and data from other sources. All estimates considered reliable are plotted on a map of the region. Similar maps show the average content of Ni, Cu, Mn and Co at 89 stations from which three or more nodules were analyzed. Variations in nodule metal content at each station are shown graphically in an appendix, where data on nodule sizes are also given. Results of new analyses of 420 nodules from 93 stations for mn, fe, ni, cu, CO, and zn are listed in another appendix. Relatively high Ni + Cu content is restricted chiefly to four groups of stations in the equatorial region, where group averages are 1.86, 1.99, 2.47, and 2.55 weight-percent. Prepared for United States Department of the Interior, Bureau of Mines. Grant no. GO284008-02-MAS. - NTIS PB82-142571.
Several nodules were analysed for each station. Nodules were reduced to powder and dried for 4 hours at 110°C.From 1983 until 1989 NOAA-NCEI compiled the NOAA-MMS Marine Minerals Geochemical Database from journal articles, technical reports and unpublished sources from other institutions. At the time it was the most extended data compilation on ferromanganese deposits world wide. Initially published in a proprietary format incompatible with present day standards it was jointly decided by AWI and NOAA to transcribe this legacy data into PANGAEA. This transfer is augmented by a careful checking of the original sources when available and the encoding of ancillary information (sample description, method of analysis...) not present in the NOAA-MMS database.
Supplement to: Fewkes, Ronald H; McFarland, William Douglas; Sorem, Ronald K (1981): Manganese nodule resource data, Sea Scope Expedition: final report. U.S. Bureau of Mines Open File Report, Dept. of Geology, Washington State University, Pullman, Washington, U.S.A., 144, 230 pp