Replication Data for: Prediction of Electronic Density of States in Guanine-TiO2 Adsorption Model based on Machine Learning

DOI

This dataset houses the code and data related to the paper titled "Prediction of Electronic Density of States in Guanine-TiO2 Adsorption Model based on Machine Learning.”

“DEFECTED_MODEL_ML” and “STOICHIOMETRIC_MODEL_ML” folders include 10 instances of neural network generations per model, which are numbered in the same order given in supplementary material Table S1. The “DEFECTED_MODEL_MD” and “STOICHIOMETRIC_MODEL_MD” folders provide crucial files used in our study per each time step (15050 steps) of molecular dynamics simulations.

“GEOMETRIC_COORDINATES_IN_FIGURE_2” and “GEOMETRIC_COORDINATES_IN_FIGURE_3” folders provides the crucial files for each represented inset of Figure 2 and Figure 3 in the main text. Thus, one can reproduce our analysis.

“MatLab_Scripts” folder provides the scripts that we used for our study. “MATLAB_ML_CVPAR_25PerCent_15Neur_2Layers” is the script for processing database. “Predict_DOS_from_GEO_URV” enables predicting DOS from Geometry. Steps are described in the code.

Usage

In example one can pick a provided figure inset folder, then can add a desired neural network and the “Predict_DOS_from_GEO_URV” script into the same folder location. Thus the predictions in the study can be reproduced. Furthermore the script enables the applications with different geometry models introduced by user.

MatLab, 2023b

DFTB+, 20.2.1

Identifier
DOI https://doi.org/10.34810/data1223
Related Identifier IsCitedBy https://doi.org/10.1016/j.csbr.2024.100008
Metadata Access https://dataverse.csuc.cat/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34810/data1223
Provenance
Creator Çetin, Yarkın Aybars ORCID logo; Martorell Masip, Benjamí ORCID logo; Serratosa, Francesc ORCID logo
Publisher CORA.Repositori de Dades de Recerca
Contributor Çetin, Yarkın Aybars; Martorell Masip, Benjamí; Universitat Rovira i Virgili
Publication Year 2024
Funding Reference European Commission H2020-NMBP-14-2018-814426 ; European Commission H2020-NMBP-TO-IND-2019-862195 ; Generalitat de Catalunya (ES) 2021SGR-00111
Rights CC BY-NC 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by-nc/4.0
OpenAccess true
Contact Çetin, Yarkın Aybars (Universitat Rovira i Virgili); Martorell Masip, Benjamí (Universitat Rovira i Virgili)
Representation
Resource Type Simulation data; Dataset
Format application/octet-stream; application/x-gzip; text/x-fixed-field; text/plain; chemical/x-xyz; text/x-matlab
Size 87504; 87352; 87560; 87296; 1238703393; 17765; 33664; 17814; 17957; 33765; 33653; 33770; 475370; 424326; 317436; 716066; 815976; 8243; 1260063; 11784; 12023; 84816; 77748; 80636; 80788; 82916; 80940; 81244; 84892; 81548; 81396; 17994; 71778; 9374090; 71542; 16669365; 10354120; 16563190; 20194375; 7137065; 13640; 13697; 13650; 13648; 13698; 13641; 13525; 13686; 13693; 13695; 21304; 21305; 21234; 35889; 35771; 25694; 438000; 430097; 443836; 444632; 449987; 437942; 436172; 442850; 444431; 430242; 436899; 441452; 445711; 432518; 428897; 447176; 436564; 446305; 432630; 444465; 5413; 6394; 1206667785
Version 2.0
Discipline Chemistry; Natural Sciences