Seawater carbonate chemistry and the behavioral response to flow of the sea urchin Paracentrotus lividus

DOI

Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2‐month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C‐pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no‐flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near‐ and far‐future OW and OA, individuals fully balanced their acid‐base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C‐pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C‐pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-02-17.

Supplement to: Cohen‐Rengifo, Mishal; Agüera, Antonio; Bouma, Tjeerd J; M'Zoudi, Saloua; Flammang, Patrick; Dubois, Philippe (2019): Ocean warming and acidification alter the behavioral response to flow of the sea urchin Paracentrotus lividus. Ecology and Evolution, 9(21), 12128-12143

Identifier
DOI https://doi.org/10.1594/PANGAEA.912260
Related Identifier IsSupplementTo https://doi.org/10.1002/ece3.5678
Related Identifier References https://doi.org/10.5061/dryad.123t3gr
Related Identifier IsDocumentedBy https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.912260
Provenance
Creator Cohen‐Rengifo, Mishal ORCID logo; Agüera, Antonio ORCID logo; Bouma, Tjeerd J ORCID logo; M'Zoudi, Saloua; Flammang, Patrick ORCID logo; Dubois, Philippe
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 84692 data points
Discipline Earth System Research
Spatial Coverage (-4.455 LON, 48.237 LAT)
Temporal Coverage Begin 2014-09-01T00:00:00Z
Temporal Coverage End 2014-09-30T00:00:00Z