ACROBAT - ett multi-infärgat histologiskt dataset från rutindiagnostik av bröstcancer skannat med WSI för digital patologi

DOI

The ACROBAT data set consists of 4,212 whole slide images (WSIs) from 1,153 female primary breast cancer patients. The WSIs in the data set are available at 10X magnification and show tissue sections from breast cancer resection specimens stained with hematoxylin and eosin (H&E) or immunohistochemistry (IHC). For each patient, one WSI of H&E stained tissue and at least one one, and up to four, WSIs of corresponding tissue stained with the routine diagnostic stains ER, PGR, HER2 and KI67 are available. The data set was acquired as part of the CHIME study (chimestudy.se) and its primary purpose was to facilitate the ACROBAT WSI registration challenge (acrobat.grand-challenge.org). The histopathology slides originate from routine diagnostic pathology workflows and were digitised for research purposes at Karolinska Institutet (Stockholm, Sweden). The image acquisition process resembles the routine digital pathology image digitisation workflow, using three different Hamamatsu WSI scanners, specifically one NanoZoomer S360 and two NanoZoomer XR. The WSIs in this data set are accompanied by a data table with one row for each WSI, specifying an anonymised patient ID, the stain or IHC antibody type of each WSI, as well as the magnification and microns per pixel at each available resolution level. Automated registration algorithm performance evaluation is possible through the ACROBAT challenge website based on over 37,000 landmark pair annotations from 13 annotators. While the primary purpose of this data set was the development and evaluation of WSI registration methods, this data set has the potential to facilitate further research in the context of computational pathology, for example in the areas of stain-guided learning, virtual staining, unsupervised learning and stain-independent models. The data set consists of three subsets, the training, validation and test set, based on the ACROBAT WSI registration challenge. There are 750 cases in the training set, for each of which one H&E WSI and one to four IHC WSIs are available, with 3406 WSIs in total. The validation set consists of 100 cases with 200 WSIs in total and the test set of 303 cases with 606 WSIs in total. Both for the validation and test set, one H&E WSI as well as one randomly selected IHC WSI is available. WSIs were anonymised by deleting the associated macro images, by generating filenames with random case IDs and by overwriting meta data fields with potentially personal information. Hamamatsu NDPI files were then converted using libvips (libvips.org/). WSIs are available as generic tiled TIFF WSIs (openslide.org/formats/generic-tiff/) at 10X magnification and lower image levels. The data set is available for download in seven separate ZIP archives, five for the training data (train_part1.zip (71.47 GB), train_part2.zip (70.59 GB), train_part3.zip (75.91 GB), train_part4.zip (71.63 GB) and train_part5.zip (69.09 GB)), one for the validation data (valid.zip 21.79 GB) and one for the test data (test.zip 68.11 GB). File listings and checksums in SHA1 format are available for checking archive/data integrity when downloading. While it would be helpful to notify SND of any publications using this data set by sending an email to request@snd.gu.se, please note that this is not required to use the data.

ACROBAT-databasen består av 4212 mikroskopibilder (whole-slide-image, WSI) från 1153 kvinnliga primära bröstcancerpatienter. WSIs i datasetet finns tillgängliga i 10X förstoring och visar vävnadsssnitt från bröstcancerresektionsprover som infärgats med hematoxylin och eosin (H&E) eller immunhistokemi (IHC). För varje patient finns en WSI av H&E-färgad vävnad och minst en och upp till fyra WSI av motsvarande vävnad som infärgats med de diagnostiska rutininfärgningarna ER, PGR, HER2 och KI67. Datasetet skapades som en del av CHIME-studien (chimestudy.se) och dess primära syfte var att underlätta ACROBAT WSI registration challenge (acrobat.grand-challenge.org). De histopatologiska preparaten kommer från rutinarbetsflödet inom den diagnostiska patologin och digitaliserades för forskningsändamål vid Karolinska Institutet (Stockholm, Sverige). Skapandet av bilderna liknar det rutinmässiga arbetsflödet för digitalisering av patologibilder, med hjälp av tre olika Hamamatsu WSI-skannrar, närmare bestämt en NanoZoomer S360 och två NanoZoomer XR. WSI:erna i detta dataset åtföljs av en datatabell med en rad för varje WSI, som anger ett anonymiserat patient-ID, infärgnings- eller IHC-antikroppstypen för varje WSI, samt förstoring och mikrometer per pixel på varje tillgänglig upplösningsnivå. Automatiserad utvärdering av registreringsalgoritmers prestanda är möjlig via webbplatsen ACROBAT Challenge, baserad på över 37000 annoterade par från 13 annoterare som riktmärken. Även om det primära syftet med detta dataset var att utveckla och utvärdera WSI-registreringsmetoder, har det potential att möjliggöra forskning inom ramen för digital patologi, till exempel inom områdena infärgningsstyrd inlärning, virtuell infärgning, icke-vägledd inlärning och modeller som är oberoende av färgningsmetod. Datasetet består av tre delmängder, tränings-, validerings- och testset, baserad på ACROBAT WSI registration challenge. Det finns 750 fall i utbildningssetet, för vart och ett av fallen finns en H&E WSI och en till fyra IHC WSI:er tillgängliga, med totalt 3406 WSI:er. Valideringssetet består av 100 fall med totalt 200 WSI och testsetet av 303 fall med totalt 606 WSI. Både för validerings- och testsetet finns en H&E WSI samt en slumpmässigt utvald IHC WSI tillgänglig. WSI:erna anonymiserades genom att de associerade makrobilderna raderats, genom att filnamn med slumpmässiga fall-ID genererats och genom att metadatafält med eventuell persondata skrivits över. Hamamatsu NDPI-filerna konverterades sedan med libvips (libvips.org/). WSI:erna finns tillgängliga som generiska TIFF WSI:er (openslide.org/formats/generic-tiff/) med 10X förstoring och lägre bildnivå. Datasetet är tillgängligt för nedladdning i sju separata ZIP-arkiv, fem för träningsdata (train_part1.zip (71,47 GB), train_part2.zip (70,59 GB), train_part3.zip (75,91 GB), train_part4.zip (71,63 GB) och train_part5.zip (69.09 GB)), ett för valideringsdata (valid.zip 21,79 GB) och ett för testdata (test.zip 68,11 GB). Fillistningar och kontrollsummor i SHA1-format finns tillgängliga för att kunna kontrollera arkiv/dataintegritet vid nedladdning. Även om det är hjälpsamt att användare meddelar SND om eventuella publikationer som använder denna datamängd genom att skicka ett e-postmeddelande till request@snd.gu.se, notera att detta inte är ett krav för att använda uppgifterna.

A subset of the whole-slide-images that were generated in terms of the CHIME study were randomly selected for the ACROBAT data set. Training and validation data are a random subset, whereas the test data was generated using stratified sampling, taking into account biomarker statuses and the scanner model that was used to generate the respective whole-slide-image.

Se beskrivningen på engelska.

Archived routine clinical diagnostic tissue slides with tissue material were scanned using whole-slide-image scanners at Karolinska Institutet.

Arkiverade slides med vävnadsmaterial för klinisk rutindiagnostik skannades med hjälp av WSI-skannrar vid Karolinska Institutet.

Identifier
DOI https://doi.org/10.48723/w728-p041
Metadata Access https://datacatalogue.cessda.eu/oai-pmh/v0/oai?verb=GetRecord&metadataPrefix=oai_ddi25&identifier=0974fc4cb40a1c697c7e4d52e7d160dd6000ef4f4bff32eae2b71e72eb88bf29
Provenance
Creator Rantalainen, Mattias; Hartman, Johan
Publisher Swedish National Data Service; Svensk nationell datatjänst
Publication Year 2023
Rights Access to data through SND. Data are freely accessible.; Åtkomst till data via SND. Data är fritt tillgängliga.
OpenAccess true
Contact https://snd.gu.se
Representation
Discipline Anatomy; Basic Biological and Medical Research; Biochemistry; Biology; Chemistry; Computer Science; Computer Science, Electrical and System Engineering; Construction Engineering and Architecture; Engineering; Engineering Sciences; Immunology; Information Science; Life Sciences; Medicine; Microbiology, Virology and Immunology; Natural Sciences
Spatial Coverage Sweden; Sverige