Seawater carbonate chemistry and colony growth and skeletal mass of bryozoans

DOI

Phenotypic plasticity has the potential to allow organisms to respond rapidly to global environmental change, but the range and effectiveness of these responses are poorly understood across taxa and growth strategies. Colonial organisms might be particularly resilient to environmental stressors, as organizational modularity and successive asexual generations can allow for distinctively flexible responses in the aggregate form. We performed laboratory experiments to examine the effects of increasing dissolved carbon dioxide (i.e. ocean acidification) on the colonial bryozoan Celleporella cornuta sampled from two source populations within a coastal upwelling region of the northern California coast. Bryozoan colonies were remarkably plastic under these carbon dioxide (CO2) treatments. Colonies raised under high CO2 grew more quickly, investing less in reproduction and producing lighter skeletons when compared to genetically identical clones raised under current atmospheric values. Bryozoans held in high CO2 conditions also changed the Mg/Ca ratio of skeletal calcite and increased the expression of organic coverings in new growth, which may serve as protection against acidified water. We also observed strong differences between populations in reproductive investment and organic covering reaction norms, consistent with adaptive responses to persistent spatial variation in local oceanographic conditions. Our results demonstrate that phenotypic plasticity and energetic trade-offs can mediate biological responses to global environmental change, and highlight the broad range of strategies available to colonial organisms.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-09-27.

Identifier
DOI https://doi.org/10.1594/PANGAEA.923743
Related Identifier https://doi.org/10.1242/jeb.163436
Related Identifier https://doi.org/10.5061/dryad.3gt37
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.923743
Provenance
Creator Swezey, Daniel S; Bean, Jessica R; Hill, Tessa M ORCID logo; Gaylord, B; Ninokawa, Aaron ORCID logo; Sanford, E
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 5681 data points
Discipline Earth System Research
Spatial Coverage (-123.801W, 38.319S, -123.074E, 39.284N)
Temporal Coverage Begin 2011-03-01T00:00:00Z
Temporal Coverage End 2011-03-31T00:00:00Z