Seawater carbonate chemistry and sperm count and fertilization rate of the mussel Mytilus galloprovincialis

DOI

The continued emissions of anthropogenic carbon dioxide are causing progressive ocean acidification (OA). While deleterious effects of OA on biological systems are well documented in the growth of calcifying organisms, lesser studied impacts of OA include potential effects on gamete interactions that determine fertilization, which are likely to influence the many marine species that spawn gametes externally. Here, we explore the effects of OA on the signalling mechanisms that enable sperm to track egg-derived chemicals (sperm chemotaxis). We focus on the mussel Mytilus galloprovincialis, where sperm chemotaxis enables eggs to bias fertilization in favour of genetically compatible males. Using an experimental design based on the North Carolina II factorial breeding design, we test whether the experimental manipulation of seawater pH (comparing ambient conditions to predicted end-of-century scenarios) alters patterns of differential sperm chemotaxis. While we find no evidence that male–female gametic compatibility is impacted by OA, we do find that individual males exhibit consistent variation in how their sperm perform in lowered pH levels. This finding of individual variability in the capacity of ejaculates to respond to chemoattractants under acidified conditions suggests that climate change will exert considerable pressure on male genotypes that can withstand an increasingly hostile fertilization environment.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-06-29.

Identifier
DOI https://doi.org/10.1594/PANGAEA.945725
Related Identifier IsSupplementTo https://doi.org/10.1098/rsbl.2022.0042
Related Identifier IsNewVersionOf https://doi.org/10.5061/dryad.9cnp5hqkf
Related Identifier IsDocumentedBy https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.945725
Provenance
Creator Lymbery, Rowan A ORCID logo; Brouwer, Jill; Evans, Jonathan P
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 15744 data points
Discipline Earth System Research
Spatial Coverage (116.274 LON, -32.234 LAT)