Research data of the publication "ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning"

DOI

Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration.

Identifier
DOI https://doi.org/10.15479/AT:ISTA:14562
Metadata Access https://research-explorer.app.ist.ac.at/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:pub.research-explorer.app.ist.ac.at:14562
Provenance
Creator Schur, Florian KM
Publisher Institute of Science and Technology Austria
Publication Year 2023
Funding Reference info:eu-repo/grantAgreement/FWF//P33367
Rights https://creativecommons.org/licenses/by-sa/4.0/; info:eu-repo/semantics/openAccess
OpenAccess true
Contact repository.manager(at)ist.ac.at
Representation
Resource Type info:eu-repo/semantics/other; doc-type:ResearchData; Text; http://purl.org/coar/resource_type/c_ddb1
Discipline Life Sciences, Natural Sciences, Engineering Sciences