Astrometric monitoring of ultracool dwarf binaries

DOI

We present the full results of our decade-long astrometric monitoring programs targeting 31 ultracool binaries with component spectral types M7-T5. Joint analysis of resolved imaging from Keck Observatory and Hubble Space Telescope and unresolved astrometry from CFHT/WIRCam yields parallactic distances for all systems, robust orbit determinations for 23 systems, and photocenter orbits for 19 systems. As a result, we measure 38 precise individual masses spanning 30-115M_Jup_. We determine a model-independent substellar boundary that is ~70M_Jup_ in mass (~L4 in spectral type), and we validate Baraffe et al. evolutionary model predictions for the lithium-depletion boundary (60M_Jup_ at field ages). Assuming each binary is coeval, we test models of the substellar mass-luminosity relation and find that in the L/T transition, only the Saumon & Marley (2008ApJ...689.1327S) "hybrid" models accounting for cloud clearing match our data. We derive a precise, mass-calibrated spectral type-effective temperature relation covering 1100-2800K. Our masses enable a novel direct determination of the age distribution of field brown dwarfs spanning L4-T5 and 30-70M_Jup_. We determine a median age of 1.3Gyr, and our population synthesis modeling indicates our sample is consistent with a constant star formation history modulated by dynamical heating in the Galactic disk. We discover two triple-brown-dwarf systems, the first with directly measured masses and eccentricities. We examine the eccentricity distribution, carefully considering biases and completeness, and find that low-eccentricity orbits are significantly more common among ultracool binaries than solar-type binaries, possibly indicating the early influence of long-lived dissipative gas disks. Overall, this work represents a major advance in the empirical view of very low-mass stars and brown dwarfs.

Cone search capability for table J/ApJS/231/15/table1 (Orbit monitoring sample)

Cone search capability for table J/ApJS/231/15/table4 (Integrated-light astrometry from CFHT/WIRCam)

Identifier
DOI http://doi.org/10.26093/cds/vizier.22310015
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJS/231/15
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJS/231/15
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJS/231/15
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJS/231/15
Provenance
Creator Dupuy T.J.; Liu M.C.
Publisher CDS
Publication Year 2017
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy