Seawater carbonate chemistry and sperm swimming speed, fertilization success of the Australasian sea urchin Heliocidaris erythrogramma in lab experiment

DOI

Background: Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios.Methodology/Principal Findings: We examined the effect of CO2-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at delta pH = 0.3, but not at delta pH = 0.5.Conclusions and Significance: The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-19.

Supplement to: Schlegel, Peter; Havenhand, Jonathan N; Gillings, Michael R; Williamson, Jane E (2012): Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins. PLoS ONE, 7(12), e53118

Identifier
DOI https://doi.org/10.1594/PANGAEA.823079
Related Identifier IsSupplementTo https://doi.org/10.1371/journal.pone.0053118.t005
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.823079
Provenance
Creator Schlegel, Peter; Havenhand, Jonathan N ORCID logo; Gillings, Michael R; Williamson, Jane E ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1375 data points
Discipline Earth System Research
Spatial Coverage (151.239 LON, -33.972 LAT)
Temporal Coverage Begin 2011-02-01T00:00:00Z
Temporal Coverage End 2011-03-31T00:00:00Z