Fourier Transform Infra-Red spectroscopy (FTIR) of submicron nascent Sea Spray Aerosol (SSA) measured during the Surface Ocean Aerosol Production (SOAP) study to the Chatham Rise (east of New Zealand) onboard the RV Tangaroa in 2012

DOI

The SOAP voyage examined air-sea interactions over the productive waters of the Chatham Rise, east of New Zealand onboard the RV Tangaroa (New Zealand National Institute of Water and Atmospheric Research, Wellington) from February 12 to March 7 (Law et al., 2017: doi:10.5194/acp-17-13645-2017). 23 seawater samples were collected throughout the voyage for the purpose of generating nascent SSA. Seawater samples were collected from the ocean surface during workboat operations (approximately 10 cm depth) or from the mixed layer (3 - 12 m depth, always less than the measured mixed layer depth) or deep water samples. Surface samples were collected in prewashed 5L PTFE bottles, subsurface measurements were colected in Niskin bottles onboard a CTD rosette. Nascent SSA was generated in-situ in a 0.45 m3 cylindrical polytetrafluoroethylene chamber housing four sintered glass filters with porosities between 16 and 250 μm (Cravigan et al., 2019: https://doi.org/10.5194/acp-2019-797). Dried and filtered compressed air was passed through the glass filters at a flow rate of 15.5 ± 3 L/min and resulting SSA was sampled from the headspace of the chamber. Filters were collected for compositional analysis using transmission Fourier Transform Infra Red (FTIR) and Ion Beam analysis (IBA). The nascent SSA was sampled through a 1 μm sharp cut cyclone (SCC 2.229PM1, BGI Inc., Waltham, Massachusetts) and collected on Teflon filters, with the sample confined to deposit on a 10 mm circular area. Back filter blanks were used to characterise the contamination during handling, and before analysis samples were dehydrated to remove all water, including SSA hydrates, as described in (Frossard and Russell, 2012: doi:10.1021/es3032083). FTIR measurements were carried out according to previous marine sampling techniques (Maria et al., 2003: doi:10.1029/2003jd003703; Russell et al., 2010: doi:10.1073/pnas.0908905107). Filter blanks were under the detection limit for the FTIR. The PM1 organic mass fraction from SSA samples collected on filters was computed from the total organic mass from FTIR analysis and the inorganic mass from ion beam analysis, as in (Cravigan et al., 2019: doi:10.5194/acp-2019-797). The uncertainty in the organic mass measured using FTIR is up to 20 % (Maria et al., 2003: doi:10.1029/2003jd003703; Russell et al., 2010: doi:10.1073/pnas.0908905107). The seawater chlorophyll-a concentration was measured by filtering 2 litres of sample water onto GF/F Whatman filters, with immediate freezing in liquid nitrogen and subsequent analysis within 3 months of collection. Filters were ground and chlorophyll-a extracted in 90 % acetone with concentration determined by a calibrated fluorometer (Perkin-Elmer), with an analytical precision of 0.001 mg/m3 (Law et al., 2011: doi:10.1016/j.dsr2.2010.10.018).

Identifier
DOI https://doi.org/10.1594/PANGAEA.919809
Related Identifier References https://doi.org/10.5194/acp-2019-797
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.919809
Provenance
Creator Cravigan, Luke T (ORCID: 0000-0003-2636-928X); Mallet, Marc D ORCID logo; Ristovski, Zoran; Modini, Robin L; Russell, Lynn M ORCID logo; Stelcer, Ed; Cohen, David D; Harvey, Mike ORCID logo; Law, Cliff S ORCID logo
Publisher PANGAEA
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 174 data points
Discipline Earth System Research
Spatial Coverage (-178.160W, -45.960S, 173.650E, -43.590N); Chatham Rise
Temporal Coverage Begin 2016-02-16T08:05:00Z
Temporal Coverage End 2016-03-06T09:04:00Z