AmodalAppleSize_RGB-D

DOI

The AmodalAppleSize_RGB-D dataset comprises a collection of RGB-D apple tree images that can be used to train and test computer vision-based fruit detection and sizing methods. This dataset encompasses two distinct sets of data obtained from a Fuji and an Elstar apple orchards. The Fuji apple orchard sub-set consists of 3925 RGB-D images containing a total of 15335 apples annotated with both modal and amodal apple segmentation masks. Modal masks denote the visible portions of the apples, whereas amodal masks encompass both visible and occluded apple regions. Notably, this dataset is the first public resource to incorporate fruit amodal masks. This pioneering inclusion addresses a critical gap in existing datasets, enabling the development of robust automatic fruit sizing methods and accurate fruit visibility estimation, particularly in the presence of partial occlusions. Besides the fruit segmentation masks, the dataset also includes the fruit size (calliper) ground truth for each annotated apple. The second sub-set comprises 2731 RGB-D images capturing five Elstar apple trees at four distinct growth stages. This sub-set includes mean diameter information for each tree at every growth stage and serves as a valuable resource for evaluating fruit sizing methods trained with the first sub-set. The present data was employed in the research paper titled "Looking behind occlusions: a study on amodal segmentation for robust on-tree apple fruit size estimation".

Identifier
DOI https://doi.org/10.34810/data916
Metadata Access https://dataverse.csuc.cat/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34810/data916
Provenance
Creator Gené Mola, Jordi ORCID logo; Ferrer Ferrer, Mar; Hemming, Jochen ORCID logo; Dalfsen, Pieter van ORCID logo; Hoog, Dirk de; Sanz Cortiella, Ricardo ORCID logo; Rosell Polo, Joan Ramon ORCID logo; Morros Rubió, Josep Ramon (ORCID: 0000-0002-1395-487X); Vilaplana Besler, Verónica ORCID logo; Ruiz Hidalgo, Javier (ORCID: 0000-0001-6774-685X); Gregorio López, Eduard ORCID logo
Publisher CORA.Repositori de Dades de Recerca
Contributor Universitat de Lleida (UdL) - Agrotecnio-CERCA center, Grup de Recerca AgròTICa i Agricutura de Precisió; Centre de Recerca en Agrotecnologia
Publication Year 2023
Funding Reference Departament de Recerca i Universitats de la Generalitat de Catalunya 2021 LLAV 00088 ; Spanish Ministry of Science, Innovation and Universities RTI2018-094222-B-I00 ; Spanish Ministry of Science, Innovation and Universities PID2021-126648OB-I00 ; Spanish Ministry of Science, Innovation and Universities PID2020-117142GB-I00 ; Spanish Ministry of Universities, Margarita Salas postdoctoral grant
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Universitat de Lleida (UdL) - Agrotecnio-CERCA center, Grup de Recerca AgròTICa i Agricutura de Precisió (Research Group in AgroICT & Precision Agriculture, Universitat de Lleida. Agrotecnio-Cerca Center)
Representation
Resource Type Experimental data; Dataset
Format application/zip; text/plain
Size 61783371587; 13819920067; 9715857737; 13488
Version 1.1
Discipline Agricultural Sciences; Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Life Sciences