Calcification rate of massive Porites spp. and Porites rus in the experiment of Moorea

DOI

This study tested the hypothesis that the response of corals to temperature and pCO2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 µmol quanta/m/s. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between-plot factors (temperature and pCO2), and one within-plot factor (taxon); calcification was used as a dependent variable. pCO2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3]-, and [CO3]2-. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3/cm**2/h. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3]-, and [CO3]2-, and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3]-, and [CO3]2-, and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO2, similar to that expected within 100 y.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-29.

Supplement to: Edmunds, Peter J; Brown, Darren; Moriarty, Vincent (2012): Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Global Change Biology, 18(7), 2173-2183

Identifier
DOI https://doi.org/10.1594/PANGAEA.820312
Related Identifier IsSupplementTo https://doi.org/10.1111/j.1365-2486.2012.02695.x
Related Identifier IsDocumentedBy https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.820312
Provenance
Creator Edmunds, Peter J ORCID logo; Brown, Darren; Moriarty, Vincent (ORCID: 0000-0002-7851-156X)
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 2080 data points
Discipline Earth System Research
Spatial Coverage (-149.815 LON, -17.477 LAT); French Polynesia
Temporal Coverage Begin 2011-04-01T00:00:00Z
Temporal Coverage End 2011-08-31T00:00:00Z