The cost of energy is becoming an increasingly important driver for the operating cost of HPC systems, adding yet another facet to the challenge of producing efficient code. In this paper, we investigate the energy implications of trading computation for locality using Hilbert and Morton space-filling curves with dense matrix-matrix multiplication. The advantage of these curves is that they exhibit an inherent tiling effect without requiring specific architecture tuning. By accessing the matrices in the order determined by the space-filling curves, we can trade computation for locality. The index computation overhead of the Morton curve is found to be balanced against its locality and energy efficiency, while the overhead of the Hilbert curve outweighs its improvements on our test system.