Band-to-band tunnelling field-effect transistors (TFETs) have long been considered as promising candidates for future low-power logic applications. However, fabricated TFETs rarely reach sub-60 mV/dec sub-threshold swings (SS) at room temperature. Previous theoretical studies identified Auger processes as possible mechanisms for the observed degradation of SS. Through first-principles quantum transport simulations incorporating carrier-carrier interactions within the Non-equilibrium Green's Function formalism through self-consistent GW approximation, we confirm here that Auger processes are indeed at least partly responsible for the poor performance of TFETs. Using a carbon nanotube TFET as testbed, we show that carrier-carrier scattering alone significantly increases the OFF-state current of these devices, thus worsening their sub-threshold behavior. The results are in the folder uploaded.