We studied if functional traits related to resource preemption (light and inorganic nutrients) exert control on space preemption of tropical seagrass meadows. Additionally, we studied if space preemption changed under different eutrophication scenarios. We took seagrass abundance data to study space preemption, seagrass traits data to study their effect on space preemption and eutrophication indicators to evaluate the level of eutrophication at each site/sampling event. The data was collected in Unguja Island (Zanzibar Archipealgo, Tanzania) in seven sites/sampling events (Harbor, Chapwani, Changuu, Bweleo, Fumba, Mangroves and Marumbi). Each site/sampling event comprised a subtidal seagrass meadow (2-4 meters depth) of around 2500 square meters, delimited by the coastline and a fringing reef. The data was taken between the 26.09.2016 to the 05.10.2016. In each site/sampling event, five 50 meters transects were deployed perpendicular to the coast and paralel to each other, approximately separated by 50 meters. The areas enclosed beweeen the transects were names A, B, C and D. Macroalgae biomass was collected as an indicator of eutrophication. Macroalgae biomass was quantified along five 50-m transects per site/sampling event, set perpendicular to the coast and parallel to each other, separated by ~50 meters. We collected the macroalgae present in three random 0.25x0.25 meters quadrats per transect. The macroalgae samples were cleaned of sediments and rinsed with water. They were then dried at 50°C in a forced air oven until constant dry weight. The macroalgae biomass was calculated as the grams of dry weight divided by the area of the quadrat (grams of dry weight per square meter).