Estimating the price elasticity of gasoline demand in correlated random coefficient models with endogeneity

DOI

We propose a per-cluster instrumental variables approach (PCIV) for estimating linear correlated random coefficient models in the presence of contemporaneous endogeneity and two-way fixed effects. This approach estimates heterogeneous effects and aggregates them to population averages. We demonstrate consistency, showing robustness over standard estimators, and provide analytic standard errors for robust inference. In Monte Carlo simulation, PCIV performs relatively well in finite samples in either dimension. We apply PCIV in estimating the price elasticity of gasoline demand using state fuel taxes as instrumental variables. We find significant elasticity heterogeneity and more elastic gasoline demand on average than with standard estimators.

Identifier
DOI https://doi.org/10.15456/jae.2024040.1947553123
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:779328
Provenance
Creator Bates, Michael; Kim, Seolah
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2024
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics