The vermilion rockfish complex, which consists of the cryptic sister species vermilion and sunset rockfish, is one of the most valuable recreational fisheries on the U.S. West Coast. These species are currently managed as a single complex, and because of uncertainty surrounding the relative contribution of each species within the data sources available, the stock status of either species are not fully known. A reliable and cost-effective method is needed to disentangle these species that will allow for the development of abundance indices, life history profiles, and catch histories that may potentially support species-specific stock assessments. Using restriction-site associated DNA sequence (RADseq) markers we generated 5,692 polymorphic loci to characterize the vermilion rockfish complex. PCA and Bayesian clustering approaches based on these loci clearly distinguished between sunset and vermilion rockfishes and identified hybrid individuals. These loci included 184 highly differentiated (FST >= 0.99) single nucleotide polymorphisms (SNPs), which we consider candidates in the planned development of a diagnostic assay capable of distinguishing between these cryptic species. In addition to clearly delineating to species, subsets of the interspecific markers allowed for insight into intraspecific differentiation in both species. Population genetic analyses for sunset rockfish identified two weakly divergent genetic groups with similar levels of genetic diversity. Vermilion rockfish, however, were characterized by three distinct genetic groups with much stronger signals of differentiation and significantly different genetic diversities. Collectively, these data will contribute to well-informed, species-specific management strategies to protect this valuable species complex.