We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from -30 to 275 days relative to the peak UV/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite data, we determine that the ANT began to brighten on 2020 June 22.8 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 30 days later on 2020 July 22.8 (MJD=59052.8) at a bolometric luminosity of L=(3.15+/-0.04)x10^43^erg/s. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to Lx~1.5x10^42^erg/s and then slowly declined over time. The X-ray emission is well fit by a power law with a photon index of {Gamma}~2.3-2.6. Both the optical and near-infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events and active galactic nuclei, it cannot be definitively classified with current data.