Deterministic grayscale nanotopography to engineer mobilities in strained MoS₂ FETs

Field-effect transistors (FETs) based on two-dimensional materials (2DMs) with atomically thin channels have emerged as a promising platform for beyond-silicon electronics. However, low carrier mobility in 2DM transistors driven by phonon scattering remains a critical challenge. To address this issue, we propose the controlled introduction of localized tensile strain as an effective mean to inhibit electron-phonon scattering in 2DM. Strain is achieved by conformally adhering the 2DM via van-der-Waals forces to a dielectric layer previously nanoengineered with a gray-tone topography. Our results show that monolayer MoS₂ FETs under tensile strain achieve an 8-fold increase in on-state current, reaching mobilities of 185 cm²/Vs at room temperature, in good agreement with theoretical calculations. The present work on nanotopographic grayscale surface engineering and the use of high-quality dielectric materials has the potential to find application in the nanofabrication of photonic and nanoelectronic devices. Here we report the main data and codes needed to reproduce the theoretical findings of this work.

Identifier
Source https://archive.materialscloud.org/record/2024.109
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2264
Provenance
Creator Liu, Xia; Erbas, Berke; Conde Rubio, Ana; Rivano, Norma; Wang, Zhenyu; Jiang, Jin; Bienz, Siiri; Kumar, Naresh; Sohier, Thibault; Penedo, Marcos; Banerjee, Mitali; Fantner, Georg; Zenobi, Renato; Marzari, Nicola; Kis, Andras; Boero, Giovanni; Brugger, Juergen
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering