Experimental studies have shown that temperature, pressure, sulfur fugacity ( fS2), and oxygen fugacity ( fO2) influence the Fe content of sphalerite. We present compositional in situ data on sphalerite from submarine volcanic-hosted massive sulfide (VHMS) ores of hydrothermal vents from different plate tectonic settings and with variable host-rock compositions. Sphalerite from sediment-hosted vents has systematically higher S contents and Fe/Zn ratios than those of the sediment-starved vents, reflecting an influence of fS2 and fO2 on Fe partitioning between fluid and sphalerite. The Fe/Zn ratios of sphalerite from sediment-starved vent systems apparently increase systematically with the fluid temperatures of the corresponding vents. We conclude that the composition of sphalerite can be used to (1) distinguish between sediment-hosted and sediment-starved hydrothermal processes, and (2) estimate minimum fluid temperatures of sphalerite precipitation from inactive sediment-starved hydrothermal vent sites and fossil VHMS deposits.