Direct Numerical Simulation of dynamic droplet wetting on superhydrophobic substrates by means of a diffuse-interface phase-field method using OpenFOAM

Master Thesis of Michael Holzinger.

The dynamic wetting process and shape evolution of a droplet impacting perpendicular on a planar, plain and super-hydrophobic substrate are investigated by means of direct numerical simulation of an immiscible and isothermal binary fluid system. A diffuse-interface phase-field method is used, where the Cahn-Hilliard equation, describing the evolution of the phase-field parameter, is coupled with the Navier Stokes system. The model parameter of the phase-field method are the capillary width, the mobility, the mixing energy parameter and the equilibrium contact angle on fluid-solid boundaries. The mixing energy parameter model will be extended in this work in order to deal with dynamic out-of-equilibrium behavior of the diffuse-interface on a local scope. 2D-axis-symmetric simulations in combination with adaptive mesh refinement will be performed, the latter allowing for an immense reduction of control volumes far from the diffuse-interface. (...) For all simulations different mixing energy parameters models are compared with each other.

Identifier
Source https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2689
Metadata Access https://tudatalib.ulb.tu-darmstadt.de/oai/openairedata?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:tudatalib.ulb.tu-darmstadt.de:tudatalib/2689
Provenance
Creator Holzinger, Michael
Publisher TU Darmstadt
Contributor TU Darmstadt
Publication Year 2021
Rights Creative Commons Attribution Share-Alike 4.0; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://tudatalib.ulb.tu-darmstadt.de/page/contact
Representation
Language English
Resource Type Text
Format application/pdf
Discipline Other