VLA Goulds Belt Survey Ophiuchus Complex Source Catalog

This table contains results from large-scale (~2000 arcmin<sup>2</sup>), deep (~20 microJy), high-resolution (~1") radio observations of the Ophiuchus star-forming complex obtained with the Karl G. Jansky Very Large Array (JVLA) at wavelengths of 4 and 6 cm (frequencies of 7.5 and 4.5 GHz). In total, 189 sources were detected, 56 of them associated with known young stellar objects (YSOs), and 4 with known extragalactic objects; the other 129 remain unclassified, but most of them are most probably background quasars. The vast majority of the young stars detected at radio wavelengths have spectral types K or M, although four objects of A/F/B types and two brown dwarf candidates are also detected. At least half of these young stars are non-thermal (gyrosynchrotron) sources, with active coronae characterized by high levels of variability, negative spectral indices, and (in some cases) significant circular polarization. As expected, there is a clear tendency for the fraction of non-thermal sources to increase from the younger (Class 0/I or flat spectrum) to the more evolved (Class III or weak-line T Tauri) stars. The young stars detected both in X-rays and at radio wavelengths broadly follow a Gudel-Benz relation, but with a different normalization than the most radio-active types of stars. Finally, the authors detected a ~70 mJy compact extragalactic source near the center of the Ophiuchus core, which should be used as gain calibrator for any future radio observations of this region. The observations were obtained with the JVLA of the National Radio Astronomy Observatory (NRAO). Two frequency sub-bands, each 1-GHz wide, and centered at 4.5 and 7.5 GHz, respectively, were recorded simultaneously. The observations were obtained on three different epochs (2011 February 17/19, April 3/4, and May 4/6) typically separated from one another by a month. The angular resolution of the observations is of the order of 1 arcsecond. To identify sources in their observations, the authors used the images corresponding to the concatenation of the three epochs, which provided the highest sensitivity. The criteria used to consider a detection as firm were: (1) sources with reported counterparts and a flux larger than four times the rms noise of the area, or (2) sources with a flux larger than five times the rms noise of the area and without reported counterparts. The authors searched the literature for previous radio detections, and for counterparts at X-ray, optical, near-infrared, and mid-infrared wavelengths. The search was done in SIMBAD, and accessed all the major catalogs (listed explicitly in the footnote of Table 3 in the reference paper). Note that the Spitzer c2d catalog includes cross-references to other major catalogs which were taken into account in their counterpart search. The authors considered a radio source associated with a counterpart at another wavelengths if the separation between the two was below the combined uncertainties of the two data sets. This was about 1.5 arcseconds for the optical and infrared catalogs, but could be significantly larger for some of the radio catalogs (for instance, the NVSS has a positional uncertainty of about 5 arcseconds). The authors found that only 76 of the sources detected here had previously been reported at radio wavelengths (matches are listed in the radio_name parameter in such cases), while the other 113 are new radio detections. On the other hand, they found a total of 100 counterparts at other wavelengths. Note that there are a significant number of sources that were previously known at radio wavelengths and have known counterparts at other frequencies. As a consequence, the number of sources that were previously known (at any frequency) is 134, while 55 of the sources in this sample are reported here for the first time. The authors argue that most of these 55 objects are likely background sources. They note, however, that 18 of the 129 unclassified objects (55 identified here for the first time and 74 previously known at radio wavelengths) are compact, have a positive spectral index, or exhibit high variability. Since these latter two properties are not expected of quasars (which are certainly variable, but usually not strongly on such short timescale), but would be natural characteristics of young stars, the authors argue that a small population of YSOs might be present among the unclassified sources. This population could account for, at most, 15% of the unclassified sources, and possibly significantly less. This table was created by the HEASARC in July 2015 based on electronic versions of Tables 1, 3 and 5 from the reference paper, which were obtained from the CDS (Catalog J/ApJ/775/63 files table1.dat, table3.dat and table5.dat). This is a service provided by NASA HEASARC .

Identifier
Source https://dc.g-vo.org/rr/q/lp/custom/nasa.heasarc/vlagbsoph
Related Identifier https://heasarc.gsfc.nasa.gov/W3Browse/all/vlagbsoph.html
Related Identifier https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3query.pl?tablehead=name=heasarc_vlagbsoph&Action=More+Options&Action=Parameter+Search&ConeAdd=1
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://nasa.heasarc/vlagbsoph
Provenance
Creator Dzib et al.
Publisher NASA/GSFC HEASARC
Publication Year 2024
OpenAccess true
Contact NASA/GSFC HEASARC help desk <heasarc-vo at athena.gsfc.nasa.gov>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Natural Sciences; Observational Astronomy; Physics