High-throughput computation of Raman spectra from first principles

Raman spectroscopy is a widely-used non-destructive material characterization method, which provides information about the vibrational modes of the material and therefore of its atomic structure and chemical composition. Raman spectra can be simulated using atomistic first-principles methods but these are computationally demanding and thus the existing databases of computational Raman spectra are fairly small. We developed an optimized workflow to efficiently calculate the Raman tensors, from which the Raman spectra can be straightforwardly simulated. The workflow was benchmarked and validated by comparison to experiments and previous computational methods for select technologically relevant material systems. Using the workflow, we performed high-throughput calculations for a large set of materials (5099) belonging to many different material classes, and collected the results to a database.

Identifier
Source https://archive.materialscloud.org/record/2024.116
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2283
Provenance
Creator Bagheri, Mohammad; Komsa, Hannu-Pekka
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering