High-redshift strong lens candidates from DES

DOI

We search Dark Energy Survey (DES) Year 3 imaging data for galaxy-galaxy strong gravitational lenses using convolutional neural networks. We generate 250000 simulated lenses at redshifts>0.8 from which we create a data set for training the neural networks with realistic seeing, sky and shot noise. Using the simulations as a guide, we build a catalogue of 1.1 million DES sources with 1.8<g-i<5, 0.620, and imag>18.2. We train two ensembles of neural networks on training sets consisting of simulated lenses, simulated non-lenses, and real sources. We use the neural networks to score images of each of the sources in our catalogue with a value from 0 to 1, and select those with scores greater than a chosen threshold for visual inspection, resulting in a candidate set of 7301 galaxies. During visual inspection, we rate 84 as "probably" or "definitely" lenses. Four of these are previously known lenses or lens candidates. We inspect a further 9428 candidates with a different score threshold, and identify four new candidates. We present 84 new strong lens candidates, selected after a few hours of visual inspection by astronomers. This catalogue contains a comparable number of high-redshift lenses to that predicted by simulations. Based on simulations, we estimate our sample to contain most discoverable lenses in this imaging and at this redshift range.

Cone search capability for table J/MNRAS/484/5330/table4 (New candidates from visual inspection of the neural network-selected sources)

Identifier
DOI http://doi.org/10.26093/cds/vizier.74845330
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/MNRAS/484/5330
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/484/5330
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/484/5330
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/MNRAS/484/5330
Provenance
Creator Jacobs C.; Collett T.; Glazebrook K.; McCarthy C.; Qin A.K.; Abbott T.M.C.,Abdalla F.B.; Annis J.; Avila S.; Bechtol K.; Bertin E.; Brooks D.,Buckley-Geer E.; Burke D.L.; Carnero Rosell A.; Carrasco Kind M.,Carretero J.; Da Costa L.N.; Davis C.; De Vicente J.; Desai S.; Diehl H.T.,Doel P.; Eifler T.F.; Flaugher B.; Frieman J.; Garcia-Bellido J.,Gaztanaga E.; Gerdes D.W.; Goldstein D.A.; Gruen D.; Gruendl R.A.,Gschwend J.; Gutierrez G.; Hartley W.G.; Hollowood D.L.; Honscheid K.,Hoyle B.; James D.J.; Kuehn K.; Kuropatkin N.; Lahav O.; Li T.S.; Lima M.,Lin H.; Maia M.A.G.; Martini P.; Miller C.J.; Miquel R.; Nord B.,Plazas A.A.; Sanchez E.; Scarpine V.; Schubnell M.; Serrano S.,Sevilla-Noarbe I.; Smith M.; Soares-Santos M.; Sobreira F.; Suchyta E.,Swanson M.E.C.; Tarle G.; Vikram V.; Walker A.R.; Zhang Y.; Zuntz J.,(The DES Collaboration)
Publisher CDS
Publication Year 2022
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysical Processes; Astrophysics and Astronomy; Cosmology; Natural Sciences; Observational Astronomy; Physics