A Bayesian Semiparametric Competing Risk Model with Unobserved Heterogeneity (replication data)

DOI

This paper generalizes existing econometric models for censored competing risks by introducing a new flexible specification based on a piecewise linear baseline hazard, time-varying regressors, and unobserved individual heterogeneity distributed as an infinite mixture of generalized inverse Gaussian (GIG) densities, nesting the gamma kernel as a special case. A common correlated latent time effect induces dependence among risks. Our model is based on underlying latent exit decisions in continuous time while only a time interval containing the exit time is observed, as is common in economic data. We do not make the simplifying assumption of discretizing exit decisions-our competing risk model setup allows for latent exit times of different risk types to be realized within the same time period. In this setting, we derive a tractable likelihood based on scaled GIG Laplace transforms and their higher-order derivatives. We apply our approach to analyzing the determinants of unemployment duration with exits to jobs in the same industry or a different industry among unemployment insurance recipients on nationally representative individual-level survey data from the US Department of Labor. Our approach allows us to conduct a counterfactual policy experiment by changing the replacement rate: we find that the impact of its change on the probability of exit from unemployment is inelastic.

Identifier
DOI https://doi.org/10.15456/jae.2022321.0720115852
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775607
Provenance
Creator Burda, Martin; Harding, Matthew; Hausman, Jerry A.
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2015
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics