Das Forschungsteam hat in 85 Mathematikklassen der Sekundarstufe 1 die mathematische Unterrichtseinheit zum Thema „quadratische Gleichungen“ begleiten. Um ein ganzheitliches Bild des Mathematikunterrichts zu gewinnen und Unterrichtsmerkmale mit dem Lernerfolg der Schülerinnen und Schüler in Verbindung setzen zu können, werden Videoaufzeichnungen des Unterrichts mit Leistungstests, Befragungen der Schülerinnen und Schüler sowie der Lehrkräfte verknüpft (Projekt).
Im Fokus des Unterrichts steht die Berechnung des Flächeninhalts. Nach der gemeinsamen Begrüßung wiederholt die Klasse die Inhalte der letzten Stunde, in der sie eine Anwendungsaufgabe zum Zaun eines Geheges betrachteten. Hierzu zeichnet die Lehrkraft drei Skizzen an die Tafel, die mögliche Formen des Zauns darstellen. Sie halten fest, dass ein rechteckiger Zaun den größten Flächeninhalt ermöglicht. Anschließend ermitteln die Schülerinnen und Schüler, welche Art von Rechteck den größten Flächeninhalt aufweist. Hierzu berechnen sie in Einzelarbeit den Flächeninhalt verschiedener Rechtecke. Im Plenum sammelt die Klasse mögliche Maße für das Rechteck und hält den Flächeninhalt fest. Zu Beginn des zweiten Stundendrittels berechnet die Klasse die Breite eines Zaunes, dessen Länge 7m beträgt. Ausgehend von dieser Rechnung leiten sie eine allgemeine Formel zur Berechnung der Breite ab. Anschließend diskutieren sie im Plenum, wie sie von dieser Formel eine Formel zur Berechnung des Flächeninhalts herleiten können. Die Lehrkraft notiert die Erkenntnisse an der Tafel. Dann überträgt sie die Formel für den Flächeninhalt in eine quadratische Funktion. Es entstehen Gespräche zum Umformen einer Funktion in eine Gleichung und zur Berechnung der Nullstellen. Im letzten Stundendrittel erörtert die Klasse gemeinsam, wie sie diese Funktion in einem Koordinatensystem darstellen können. Hierzu sammeln die Schülerinnen und Schüler bekannte Werte des Flächeninhalts. Sie berechnen weitere Werte durch Einsetzen in die Funktion. Die Lehrkraft trägt diese in ein Koordinatensystem an der Tafel ein. Anhand der entstandenen Parabel bespricht die Klasse, wie sie den Scheitelpunkt rechnerisch ermitteln können. Hierzu berechnet ein Schüler zunächst die Nullstellen. Die Klasse hält fest, dass der Scheitelpunkt den größten Wert für den Flächeninhalt darstellt. In den letzten Minuten des Unterrichts bearbeiten die Schülerinnen und Schüler eine Aufgabe zu einer unbekannten Zahl im Lehrbuch. Zunächst bespricht die Klasse die Aufgabenstellung im Plenum. Dann lösen die Schülerinnen und Schüler die Aufgabe in Einzelarbeit. Eine Schülerin nennt die Gleichung, die sie zur Ermittlung der Zahl aufgestellt hat. Gemeinsam diskutiert die Klasse das Ergebnis. Die Lehrkraft löst die Gleichung an der Tafel. Zum Abschluss erteilt sie die Hausaufgaben. (DIPF/kw)