MULTIVARIATE VOLATILITY MODELING OF ELECTRICITY FUTURES (replication data)

DOI

We model the dynamic volatility and correlation structure of electricity futures of the European Energy Exchange index. We use a new multiplicative dynamic conditional correlation (mDCC) model to separate long-run from short-run components. We allow for smooth changes in the unconditional volatilities and correlations through a multiplicative component that we estimate nonparametrically. For the short-run dynamics, we use a GJR-GARCH model for the conditional variances and augmented DCC models for the conditional correlations. We also introduce exogenous variables to account for congestion and delivery date effects in short-term conditional variances. We find different correlation dynamics for long- and short-term contracts and the new model achieves higher forecasting performance compared \to a standard DCC model.

Identifier
DOI https://doi.org/10.15456/jae.2022320.0732188544
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775710
Provenance
Creator Bauwens, Luc; Hafner, Christian M.; Pierret, Diane
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2013
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics