Corals adapted to extreme and fluctuating seawater pH increase calcification rates and have unique symbiont communities

Ocean acidification (OA) is a severe threat to coral reefs mainly by reducing their calcification rate. Identifying the resilience factors of corals to decreasing seawater pH is of paramount importance to predict the survivability of coral reefs in the future. This study compared corals adapted to variable pHT (i.e., 7.23-8.06) from the semi-enclosed lagoon of Bourake, New Caledonia, to corals adapted to more stable seawater pHT (i.e., 7.90-8.18). In a 100-day aquarium experiment, we examined the physiological response and genetic diversity of Symbiodiniaceae from three coral species (Acropora tenuis, Montipora digitata and Porites sp.) from both sites under three stable pHNBS conditions (8.11, 7.76, 7.54) and one fluctuating pHNBS regime (between 7.56 and 8.07). Bourake corals consistently exhibited higher growth rates than corals from the stable pH environment. Interestingly, A. tenuis from Bourake showed the highest growth rate under the 7.76 pHNBS condition, whereas for M. digitata and Porites sp. from Bourake, growth was highest under the fluctuating regime and the 8.11 pHNBS conditions, respectively. While OA generally decreased coral calcification by ca. 16%, Bourake corals showed higher growth rates than corals from the stable pH environment (21% increase for A. tenuis to 93% for M. digitata, with all pH conditions pooled). This superior performance coincided with divergent symbiont communities that were more homogenous for Bourake corals. Corals adapted to variable pH conditions appear to have a better capacity to calcify under reduced pH compared to corals native to more stable pH condition. This response was not gained by corals from the more stable environment exposed to variable pH during the 100-day experiment, suggesting that long-term exposure to pH fluctuations and/or differences in symbiont communities benefit calcification under OA.

Identifier
Source https://data.blue-cloud.org/search-details?step=~012D4E5105C492FED1F6F003165D5C763AC85CA8584
Metadata Access https://data.blue-cloud.org/api/collections/D4E5105C492FED1F6F003165D5C763AC85CA8584
Provenance
Instrument Illumina MiSeq; ILLUMINA
Publisher Blue-Cloud Data Discovery & Access service; ELIXIR-ENA
Publication Year 2024
OpenAccess true
Contact blue-cloud-support(at)maris.nl
Representation
Discipline Marine Science
Temporal Coverage Begin 2023-04-28T00:00:00Z
Temporal Coverage End 2023-04-29T00:00:00Z