Neural Rerankers for Dependency Parsing

DOI

This resource contains code for different types of neural rerankers (RCNN, RCNN-shared and GCN) from the paper: Do and Rehbein (2020). "Neural Reranking for Dependency Parsing: An Evaluation". We also include in this resource the pre-trained models of different rerankers on 3 languages: English, German and Czech that are used to report results in the paper.

Identifier
DOI https://doi.org/10.11588/data/NNGPQZ
Related Identifier https://doi.org/10.18653/v1/2020.acl-main.379
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/NNGPQZ
Provenance
Creator Do, Bich-Ngoc; Rehbein, Ines
Publisher heiDATA
Contributor Do, Bich-Ngoc
Publication Year 2023
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Do, Bich-Ngoc (Institute of Computational Linguistics, Heidelberg University & Leibniz Institute for German Language)
Representation
Resource Type source code; Dataset
Format application/gzip; application/zip; text/markdown
Size 67611294; 60858042; 76156535; 38302104; 97594841; 24957801; 18619960; 119236226; 93481; 1576; 82; 577
Version 1.0
Discipline Humanities