Galaxy-scale lenses in the Kilo-Degree Survey

DOI

We present a new sample of galaxy-scale strong gravitational lens candidates, selected from 904deg^2^ of Data Release 4 of the Kilo-Degree Survey, i.e. the 'Lenses in the Kilo-Degree Survey' (LinKS) sample. We apply two convolutional neural networks (ConvNets) to ~88000 colour-magnitude-selected luminous red galaxies yielding a list of 3500 strong lens candidates. This list is further downselected via human inspection. The resulting LinKS sample is composed of 1983 rank-ordered targets classified as 'potential lens candidates' by at least one inspector. Of these, a high-grade subsample of 89 targets is identified with potential strong lenses by all inspectors. Additionally, we present a collection of another 200 strong lens candidates discovered serendipitously from various previous ConvNet runs. A straightforward application of our procedure to future Euclid or Large Synoptic Survey Telescope data can select a sample of ~3000 lens candidates with less than 10 per cent expected false positives and requiring minimal human intervention.

Cone search capability for table J/MNRAS/484/3879/tablea1 (LinKS sample)

Identifier
DOI http://doi.org/10.26093/cds/vizier.74843879
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/MNRAS/484/3879
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/484/3879
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/MNRAS/484/3879
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/MNRAS/484/3879
Provenance
Creator Petrillo C.E.; Tortora C.; Vernardos G.; Koopmans L.V.E.,Verdoes Kleijn G.; Bilicki M.; Napolitano N.R.; Chatterjee S.; Covone G.,Dvornik A.; Erben T.; Getman F.; Giblin B.; Heymans C.; de Jong J.T.A.,Kuijken K.; Schneider P.; Shan H.; Spiniello C.; Wright A.H.
Publisher CDS
Publication Year 2022
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysical Processes; Astrophysics and Astronomy; Galactic and extragalactic Astronomy; Natural Sciences; Observational Astronomy; Physics