Cosmic Ray neutron sensing (CRNS) is an emerging technology which is used to close the scaling gap between point measurements, such as TDR or soil samples, and the airborne remote sensing data. CRNS estimates the area-average soil water content by the detection of soil-reflected cosmic-ray neutrons in air. This method is characterized by an non-linearly shaped horizontal footprint of hundreds of meters and a vertical footprint of tens of centimetres (Köhli et al. 2015). During the campaign, a portable sensor (the so-called CRNS Rover) was used to study the spatial soil moisture variability in the target area in Hordorf. The rover was equipped with a CRNS-RV unit from Hydroinnova LLC (HI-RC01 detector) and a polyethylene shield below the detector to better reduce local effects of the field track. Neutron count data were processed including several physical, soil, and terrain corrections (see Schrön 2020, cfg file and the software ) to obtain the spatial soil moisture distribution at the Hordorf ground truthing site.