Arachnida is an ancient, diverse, and ecologically important animal group that contains a number of species of interest for medical, agricultural, and engineering applications. Despite this applied importance, many aspects of the arachnid tree of life remain unresolved, hindering comparative approaches to arachnid biology. Biologists have made considerable efforts to resolve the arachnid phylogeny yet, limited and challenging morphological characters, as well as a dearth in genetic resources, have confounded these attempts. Here, we present a genomic toolkit for arachnids featuring hundreds of conserved DNA regions (ultraconserved elements or UCEs) to allow targeted sequencing of any species in the arachnid tree of life. We used recently developed capture probes designed from conserved genomic regions of available arachnid genomes and enriched a sampling of 32 diverse arachnids. Sequence capture returned an average of 487 UCE loci for all species, with a range from 170 to 722. Phylogenetic analysis of these UCEs produced a highly resolved arachnid tree with relationships largely consistent with recent transcriptome- based phylogenies. We also tested the phylogenetic informativeness of UCE probes within the spider, scorpion, and harvestman orders, demonstrating the utility of these markers at shallower taxonomic scales, even down to the level of species differences. This probe set will open the door to phylogenomic and population genomic studies across the arachnid tree of life, enabling systematics, species delimitation, species discovery, and conservation of these diverse arthropods.