Indoor mesocosm experiment 2013 on effects of increased CO2 concentration on nutrient limited coastal summer plankton: Phytoplankton biomass

DOI

Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, 2 drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in 12 indoor mesocosms (volume ~1400 l) and manipulated partial pressure of carbon dioxide ( pCO2) in seawater to yield 6 CO2 treatments with 2 different temperature treatments (16.6°C and 22.4°C, pCO2 range = 360-2030 µatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily Nodularia spumigena) over 4 wk. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO2 had a negative impact on Nodularia sp. biomass, which was exacerbated by warming. Our results imply that Nodularia sp. may contribute less to new nitrogen inputs in the Baltic Sea in the future.

We defined the post-bloom phase as the phase when phytoplankton biomass was in decline and below 100 μg C l−1 on average across all treatments.

Supplement to: Paul, Allanah Joy; Sommer, Ulrich; Paul, Carolin; Riebesell, Ulf (2018): Baltic Sea diazotrophic cyanobacterium is negatively affected by acidification and warming. Marine Ecology Progress Series, 598, 49-60

Identifier
DOI https://doi.org/10.1594/PANGAEA.889314
Related Identifier https://doi.org/10.3354/meps12632
Related Identifier https://doi.org/10.1594/PANGAEA.848402
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.889314
Provenance
Creator Paul, Allanah Joy ORCID logo; Sommer, Ulrich
Publisher PANGAEA
Publication Year 2018
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 3130 data points
Discipline Earth System Research
Temporal Coverage Begin 2013-08-14T00:00:00Z
Temporal Coverage End 2013-09-13T00:00:00Z