The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically-relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate change impacts across sectors.
ISIMIP2a is the second ISIMIP simulation round, focusing on historical simulations (1971-2010) of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This may serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming.
The focus topic for ISIMIP2a is model evaluation and validation, in particular with respect to the representation of impacts of extreme weather events and climate variability. During this phase, four common global observational climate data sets were provided across all impact models and sectors. In addition, appropriate observational data sets of impacts for each sector were collected, against which the models can be benchmarked. Access to the input data for the impact models is provided through a central ISIMIP archive (see ISIMIP 2a Input Data & Bias Correction at https://www.isimip.org/gettingstarted/#input-data-bias-correction).
This entry refers to the ISIMIP2a simulation data from permafrost models: JULES-B1 (formerly JULES_UoE), LPJmL, IAPRAS-DSS.
The ISIMIP2a Permafrost outputs are based on simulations from 3 permafrost models (see listing) according to the ISIMIP2a Simulation Protocol (https://www.isimip.org/protocol/#isimip2a). The models simulate coupled water and carbon processes, like the soil carbon storage on permafrost soils, non-linear effects in changing vegetation and fire, and the physical state of the permafrost based on soil, climate and physio-geographical information. A more detailed description of the models and model-specific amendments of the protocol are available here: https://www.isimip.org/impactmodels/.