Phononic origin of the infrared dielectric properties of RE₂O₃ (RE = Y, Gd, Ho, Lu) compounds

Understanding the phononic origin of the infrared dielectric properties of yttria (Y₂O₃) and other rare-earth sesquioxides (RE₂O₃) is a fundamental task in the search of appropriate RE₂O₃ materials that serve particular infrared optical applications. We herein investigate the infrared dielectric properties of RE₂O₃ (RE = Y, Gd, Ho, Lu) using DFT-based phonon calculations and Lorentz oscillator model. The abundant IR-active optical phonon modes that are available for effective absorption of photons result in high reflectance of RE₂O₃, among which four IR-active modes originated from large distortions of REO₆ octahedra are found to contribute dominantly to the phonon dielectric constants. Particularly, the present calculation method by considering one-phonon absorption process is demonstrated with good reliability in predicting the infrared dielectric parameters of RE₂O₃ at the far-infrared as well as the vicinity of mid-infrared region, and the potential cutoff frequency/wavelength of its applicability is disclosed as characterized by the maximum frequency of IR-active longitudinal phonon modes. The results deepen the understanding on infrared dielectric properties of RE₂O₃, and aid the computational design of materials with appropriate infrared properties.

Identifier
Source https://archive.materialscloud.org/record/2024.56
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2126
Provenance
Creator Luo, Yixiu; Wang, Juan; Sun, Luchao; Wang, Jingyang
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering