The dataset contains over 1.6 million tweets (tweet IDs), labeled with sentiment by human annotators.
There are 15 Twitter corpora for the corresponding 15 European languages. The data can be used to train and evaluate Twitter sentiment classifiers, to compute annotator agreement, or to study the differences between language usage on Twitter.
The data analysis is described in the following papers:
I. Mozetič, M. Grčar, J. Smailović. Multilingual Twitter sentiment classification: The role of human annotators, PLoS ONE 11(5): e0155036, doi: 10.1371/journal.pone.e0155036, 2016.
(http://dx.doi.org/10.1371/journal.pone.0155036)
I. Mozetič, L. Torgo, V. Cerqueira, J. Smailović. How to evaluate sentiment classifiers for Twitter time-ordered data?, PLoS ONE 13(3): e0194317, doi: 10.1371/journal.pone.0194317, 2018.
(https://dx.doi.org/10.1371/journal.pone.0194317)