Manufacturing of Solid Oxide Fuel Cells (SOFC) using thermal spray technology is one of the most economical and technologically advanced approaches for energy applications. High cooling rates during thermal spray deposition process however impart residual stress in the layered SOFC materials and hence influence the durability and efficiency of the cell. The characterisation of this residual train is therefore critical in optimising the materials and coating process parameters for future generation SOFC. Neutron diffraction due to its high beam penetration, unlike other measurement techniques, offers the opportunity to non-destructively measure the through thickness stress profile in the SOFC assembly. The objective of this proposal is to use neutron scattering (ENGIN-X) due to high flux and deep penetration to study residual strain in air plasma sprayed (APS) anode coatings used in SOFC.