Penalized sieve estimation of zero-inefficiency stochastic frontiers (replication data)

DOI

Stochastic frontier models for cross-sectional data typically assume that the one-sided distribution of firm-level inefficiency is continuous. However, it may be reasonable to hypothesize that inefficiency is continuous except for a discrete mass at zero capturing fully efficient firms (zero-inefficiency). We propose a sieve-type density estimator for such a mixture distribution in a nonparametric stochastic frontier setting under a unimodality-at-zero assumption. Consistency, rates of convergence and asymptotic normality of the estimators are established, as well as a test of the zero-inefficiency hypothesis. Simulations and two applications are provided to demonstrate the practicality of the method.

Identifier
DOI https://doi.org/10.15456/jae.2023236.1341450325
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:778268
Provenance
Creator Cai, Jun; Horrace, William C.; Parmeter, Christopher
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2023
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics