SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS (replication data)

DOI

We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis-Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing.

Identifier
DOI https://doi.org/10.15456/jae.2022321.0715019016
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775630
Provenance
Creator Herbst, Edward P.; Schorfheide, Frank
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2014
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics