The data are a decomposition of the extinction curves published by Aiello S., Barsella B., Chlewicki G., Greenberg J.M., Patriarchi P., and Perinotto M. (1988A&AS...73..195A) in the parameter scheme of Fitzpatrick E.L. and Massa D. (1988ApJ...328..734F). Each extinction curve k(x) = (A(lambda)-A(V))/(A(B)-A(V)) is given by: k(x) = c1 + c2x + c3 D(x,x0,y) + c4F(x) Where x = 1/wavelength (in inverse micron), D is a Drude profile: D(x,x0,y) = x^2^/((x^2^-x0^2^)^2^ + y^2^x^2^) and F is a polynomial of order 3: F(x) = 0.05392(x-5.9)^2^ + 0.0564(x-5.9)^3^ for 5.9<x<8.0 F(x) = 0 for x<5.9 In this scheme the parameters have the following meaning: c1: related directly to c2 because of normalisation k(x) c2: slope of the linear rise ( mag/E(B-V) ) y: width of the bump (inverse micron) c3: c3/y^2^ is bump height, pic3/(2.y) is bump area x0: position of the bump (inverse micron) c4: amount of FUV non-linear rise contribution: at 8 mu^-1^: 2.9c4 (mag/E(B-V)) | * ^ | * 2.9c4 | ^ * k(x)| c3/y^2 * * .. v | .. | v * .. * | .. c2 1 | * 0 | * |^ * |Rv * |v____|_____ V B x0 5.9 8.0 x=1/wavelength (1/micron) Values of Rv, the ratio of total to selective extinction, can be found in Aiello et al. (1988A&AS...73..195A).