On‐surface synthesis of edge‐extended zigzag graphene nanoribbons

In this record we provide the data to support our recent finding on the synthesis of edge-extended zigzag graphene nanoribbons. Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought‐after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In the manuscript where the data presented here is discussed, a design motif for synthesizing a novel class of GNRs termed edge‐extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance—a 3‐zigzag‐rows‐wide ZGNR—with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge‐extended 3‐ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased in the manuscript opens up new possibilities for synthesizing a diverse range of edge‐extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure‐dependent electronic properties.

Identifier
Source https://archive.materialscloud.org/record/2023.155
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:1930
Provenance
Creator Kinikar, Amogh; Xu, Xiushang; Di Giovannantonio, Marco; Gröning, Oliver; Eimre, Kristjan; Pignedoli, Carlo Antonio; Müllen, Klaus; Narita, Akimitsu; Ruffieux, Pascal; Fasel, Roman
Publisher Materials Cloud
Publication Year 2023
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering