The Orange workflow for observing collocation trends ColTrend 1.0
ColTrend is a workflow (.OWS file) for Orange Data Mining (an open-source machine learning and data visualization software: https://orangedatamining.com/) that allows the user to observe temporal collocation trends in corpora. The workflow consists of a series of Python scripts, data filters, and visualizers.
As input, the workflow takes a .CSV file with data on collocations and their relative frequencies by year of publication extracted from a corpus. As output, it provides a .TSV file containing the same data (or a filtered selection thereof) enriched with four measures that indicate the collocation’s temporal trend in the corpus: (1) the slope (k) of a linear regression model fitted to the frequency data, which indicates whether the frequency of use of the collocation is increasing or declining; (2) the coefficient of determination (R2) of the linear regression model, indicating how linear the change in the collocation’s use is; (3) the ratio (m) of maximum relative frequency and average relative frequency, which indicates peaks in collocation usage; and (4) the coefficient of recent growth (t), which indicates an increased usage of the collocation in the last three years of the observed corpus data.
The entry also contains three .CSV files that can be used to test the workflow. The files contain collocation candidates (along with their relative frequencies per year of publication) extracted from the Gigafida 2.0 Corpus of Written Slovene (https://viri.cjvt.si/gigafida/) with three different syntactic structures (as defined in http://hdl.handle.net/11356/1415):
1) p0-s0 (adjective + noun, e.g. rezervni sklad),
2) s0-s2 (noun + noun in the genitive case, e.g. ukinitev lastnine), and
3) gg-s4 (verb + noun in the accusative case, e.g. pripraviti besedilo).
It should be noted that only collocation candidates with absolute frequency of 15 and above were extracted.
Please note that the ColTrend workflow requires the installation of the Text Mining add-on for Orange. For installation instructions as well as a more detailed description of the different phases of the workflow and the measures used to observe the collocation trends, please consult the README file.