Chandra DF obscured & Compton-thick AGNs. I. Variability

DOI

We present a detailed X-ray spectral analysis of 1152 active galactic nuclei (AGNs) selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs (N_H_>10^23^cm^-2^). By fitting spectra with physical models, 436 (38%) sources with L_X_>10^42^erg/s are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness ratio measure of the obscuration level that can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed log N-log S relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. Nineteen percent (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high column density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sight line may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic N_H_ distribution and its evolution. The CT/highly obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (~17yr in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of N_H_, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified owing to large spectral fitting errors.

Cone search capability for table J/ApJ/877/5/table2 (X-ray spectral fitting results for highly obscured AGNs)

Identifier
DOI http://doi.org/10.26093/cds/vizier.18770005
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJ/877/5
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/877/5
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/877/5
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJ/877/5
Provenance
Creator Li J.; Xue Y.; Sun M.; Liu T.; Vito F.; Brandt W.N.; Hughes T.M.; Yang G.,Tozzi P.; Zhu S.; Zheng X.; Luo B.; Chen C.-T.; Vignali C.; Gilli R.; Shu X.
Publisher CDS
Publication Year 2020
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Cosmology; Galactic and extragalactic Astronomy; High Energy Astrophysics; Natural Sciences; Observational Astronomy; Physics