Capturing dichotomic solvent behavior in solute–solvent reactions with neural network potentials

Simulations of chemical reactivity in condensed phase systems represent an ongoing challenge in computational chemistry, where traditional quantum chemical approaches typically struggle with both the size of the system and the potential complexity of the reaction. Here, we introduce a workflow aimed at efficiently training neural network potentials (NNPs) to explore energy barriers in solution at the hybrid density functional theory level. The computational burden associated with training at the PBE0-D3(BJ) level is bypassed through the use of active and transfer learning techniques, whereas extensive sampling of the transition state region is accelerated by well-tempered metadynamics simulations using multiple time-step integration. These NNPs serve to explore a puzzling solute--solvent reactivity route involving the ring opening of N-enoxyphthalimide experimentally observed in methanol but not in 2,2,2-trifluoroethanol (TFE). This reaction represents a challenging example characterized by intricate hydrogen bonding networks and structurally ambiguous solvent-sensitive transition states. The methodology successfully delivers detailed free energy surfaces and relative energy barriers in quantitative agreement with experiment. These barriers are associated with an ensemble of transition states involving direct participation of up to five solvent molecules. While this picture contrasts with the single transition state structure assumed by current static models, no drastic qualitative difference is observed between the formed hydrogen bonding networks and the number of participating solvent molecules in methanol or TFE. The dichotomy between the two solvents thus essentially arises from an electronic effect (i.e., distinct nucleophilicity) and from the larger conformational entropy contributions in methanol. This example underscores the critical role dynamic simulations at the ab initio levels play in capturing the full complexity of solute-solvent interactions.

The files used in our studies are listed below, ensuring reproducibility and providing resources for future studies related to this work.

Identifier
Source https://archive.materialscloud.org/record/2024.135
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:2296
Provenance
Creator Célerse, Frédéric; Juraskova, Veronika; Das, Shubhajit; Wodrich, Matthew D.; Corminboeuf, Clémence
Publisher Materials Cloud
Publication Year 2024
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering