Seawater carbonate chemistry and larval feeding physiology of the mussel Mytilus californianus

DOI

Ocean acidification (OA)—a process describing the ocean's increase in dissolved carbon dioxide ( pCO2) and a reduction in pH and aragonite saturation state (Ωar) due to higher concentrations of atmospheric CO2—is considered a threat to bivalve mollusks and other marine calcifiers. While many studies have focused on the effects of OA on shell formation and growth, we present findings on the separate effects of pCO2, Ωar, and pH on larval feeding physiology (initiation of feeding, gut fullness, and ingestion rates) of the California mussel Mytilus californianus. We found that elevated pCO2 delays initiation of feeding, while gut fullness and ingestion rates were best predicted by Ωar; however, pH was not found to have a significant effect on these feeding processes under the range of OA conditions tested. We also modeled how OA impacts on initial shell development and how feeding physiology might subsequently affect larval energy budget components (e.g. scope for growth) and developmental rate to 260 µm shell length, a size at which larvae typically become pediveligers. Our model predicted that Ωar impacts on larval shell size and ingestion rates over the initial 48 h period of development would result in a developmental delay to the pediveliger stage of >4 d, compared with larvae initially developing in supersaturated conditions (Ωar > 1). Collectively, these results suggest that predicted increases in pCO2 and reduced Ωar values may negatively impact feeding activity and energy balances of bivalve larvae, reducing their overall fitness and recruitment success.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-04-26.

Identifier
DOI https://doi.org/10.1594/PANGAEA.958047
Related Identifier https://doi.org/10.3354/meps11977
Related Identifier https://www.bco-dmo.org/dataset/662154
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.958047
Provenance
Creator Gray, Matthew W ORCID logo; Langdon, Chris ORCID logo; Waldbusser, George G (ORCID: 0000-0002-8334-580X); Hales, Burke; Kramer, Sean
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 1632 data points
Discipline Earth System Research
Spatial Coverage (-124.061 LON, 44.747 LAT)