Abundances and ages of stars in the Milky Way bulge

DOI

The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within R_GAL_<3.5kpc. We focus on fields with b<12{deg}, and out to longitudes of l<15{deg}. We see that stars in the bulge are about twice as old ({tau}=8Gyr), on average, compared to those in the solar neighborhood ({tau}=4Gyr), with a larger dispersion in [Fe/H] (~0.38 compared to 0.23dex). This age gradient comes primarily from the low-{alpha} stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ({sigma}[Fe/H]~0.4dex) and line-of- sight velocity ({sigma}vr~90km/s), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b=8{deg}, but not at b=12{deg}. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.

Cone search capability for table J/ApJ/900/4/table3 (Table of results)

Identifier
DOI http://doi.org/10.26093/cds/vizier.19000004
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/ApJ/900/4
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/900/4
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/ApJ/900/4
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/ApJ/900/4
Provenance
Creator Sit T.; Ness M.K.
Publisher CDS
Publication Year 2023
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Galactic and extragalactic Astronomy; Interdisciplinary Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy