Stable oxygen isotopes and Mg/Ca in planktic foraminifera and water column data from the Western Pacific Warm Pool, supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Moffa-Sanchez, Paola; Oppo, Delia W; Martínez Méndez, Gema; Steinke, Stephan; Hebbeln, Dierk (2017): Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera From Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography, 32(11), 1174-1194

DOI

Mg/Ca and stable oxygen isotope compositions (d18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater d18O) from the Western Pacific Warm Pool. Seawater d18O (d18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (d18OSW = 0.37 × S-12.4 and d18OSW = 0.33 × S-11.0). We combine shell d18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.

Identifier
DOI https://doi.org/10.1594/PANGAEA.887764
Related Identifier https://doi.org/10.1002/2017PA003122
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.887764
Provenance
Creator Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Moffa-Sanchez, Paola; Oppo, Delia W; Martínez Méndez, Gema; Steinke, Stephan; Hebbeln, Dierk
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Publication Year 2018
Rights Creative Commons Attribution 3.0 Unported
OpenAccess true
Representation
Language English
Resource Type Supplementary Collection of Datasets
Format application/zip
Size 3 datasets
Discipline Earth System Research
Spatial Coverage (123.480W, -10.250S, 151.310E, 15.400N)
Temporal Coverage Begin 2013-05-09T00:00:00Z
Temporal Coverage End 2013-06-13T00:06:00Z