Designing crystallization to tune the performance of phase-change memory: rules of hierarchical melt and coordinate bond

While alloy design has practically shown an efficient strategy to mediate two seemingly conflicted performances of writing speed and data retention in phase-change memory, the detailed kinetic pathway of alloy-tuned crystallization is still unclear. Here, we propose hierarchical melt and coordinate bond strategies to solve them, where the former stabilizes a medium-range crystal-like region and the latter provides a rule to stabilize amorphous. The Er0.52Sb2Te3 compound we designed achieves writing speed of 3.2 ns and ten-year data retention of 161 °C. We provide a direct atomic-level evidence that two neighbor Er atoms stabilize a medium-range crystal-like region, acting as a precursor to accelerate crystallization; meanwhile, the essential reason of stabilization originates from the formation of coordinate bonds by sharing lone-pair electrons of chalcogenide atoms with the empty 5d orbitals of Er atoms. The two rules pave the way for the development of storage-class memory with excellent comprehensive performance to achieve next revolutionary technology node.

Identifier
Source https://archive.materialscloud.org/record/2021.67
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:836
Provenance
Creator Zhao, Jin; Song, Wen-Xiong; Xin, Tianjiao; Song, Zhitang
Publisher Materials Cloud
Publication Year 2021
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering